## Work Sheet 8 A.

## Series and Parallel problems - Words.

For each problem DRAW the circuit, put the information from the question onto the drawing and then solve using

- guess who's law.

1. Three resistors are connected in parallel and then this combination is connected in series with a 10 Ohm resistor. When 500 Volts is applied to the circuit, 25 Amps flows in the 10 Ohm series resistor. If 2 of the parallel resistors are 28 Ohms each then what is the value of the unknown resistor, and what is the current through it and the voltage drop across it ?
2. A heating element is in two sections, each of 45 Ohms. Find the current drawn from the supply ( 230 V ) when the sections are connected in a) series and b) parallel ?
3. Two cables having resistances of 0.5 Ohms and 0.8 Ohms carry between them a current of 30 Amps . What is the current in each cable and the Voltage Drop that occurs when the current is flowing ?
4. A cable carries a current of 45 Amps and when that happens a voltage drop of 21 Volts occurs. What would be the resistance value of a cable connected in parallel with the first to reduce the voltage drop to $5 \%$ of 230 Volts.
5. The specification for a wire to be used in a wire wound resistor says that its resistance is 0.6 Ohms per meter. How many meters would be required to give :
a) A resistance of 3.7 Ohms , and
b) 0.2 Ohms, given that the wire must be at least a meter long to reach from one end of the resistor to the other ?
6. A circuit consists of three resistors initially connected in series and then in parallel. What in general terms occurs to the following, given the changes listed.

Series
Parallel

Supply current:
if Voltage is doubled?

Total resistance:
if one resistor is removed?

Supply voltage:
if the current has halved?

Total current:
if an extra resistor is added?

Voltage drop across each resistor:
if an extra resistor is added?

WIs $8 A \quad Q 4$
BoAt Mire

Current situation:


Assume that load current is not affected by wit drop.

Total cable resistance $\left(R_{c}\right)$ censes 2) Volts dep at 45 A .

We reed to reduce this volt drop to $50 \%$.
The target volt dup: $50.230=11.5 \mathrm{~V}$ current volt dip:

$$
=21 \mathrm{~V}
$$

Current este resistance: $\frac{21}{45}=0.4667 \Omega$
Target cable resistance: $\frac{11.5}{45}=0.2556 \Omega$
We need to find a resistance to place in parallel with $0.4667 \Omega$ to make it look like $0.2556 \Omega$.
Use parallel resistance formula:

$$
\frac{1}{0.2556}=\frac{1}{0.4667}+\frac{1}{R_{t}}
$$

$$
\begin{aligned}
W / S \quad 8 A \quad Q 4 & \text { Bort Milve } \\
3.913 & =2.143+\frac{1}{R_{c}} \\
\frac{1}{R_{c}} & =1.770 \\
R_{c} & =0.5649 \Omega
\end{aligned}
$$

Cross-check.

which is $5 \%$ of 230 V .
The parallel coble must have a resistance of $0.5749 \Omega$ or below.

