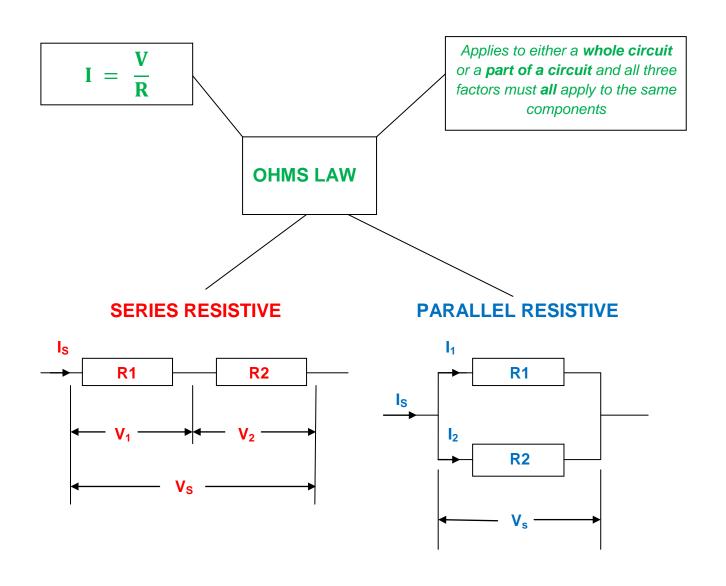


A

DC fundamentals EE3103 Student workbook 2020 for Ohms and Kirchhoffs laws with Series and parallel exercises



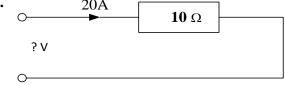
Student name

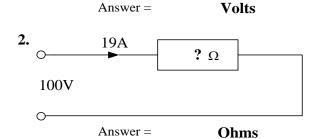
WORKSHEET ASSIGNMENT ON RESISTOR CIRCUIT WORKSHEETS

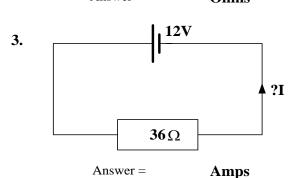
WORKSHEET CHECKLIST

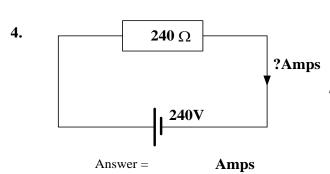
	WORKSHEET	TICK FINISHED
OLIMO I AVA	NUMBER	
OHMS LAW		
BASIC	1A	
	1B	
	1C	
SERIES	2A	
	2B	
	3A	
PARALLEL	5A	
	6A	
RESISTIVE NETWORKS		
	10A	
	10B	
	10C	
	10D	
	11A	
	11B	
SERIES-PARALLEL		
	15A	
	15B	
	8A	
	16A	
	16C	
LESSON ON BATTERY INTERNAL RES	SISTANCE	
INTERNAL R	9A	
HARD SERIES-PARALLEL		
	16D	
	16E	
2 Assignment questions	assignment	
Tutor sign off for workbook completion signature		


CURRENT CONSTANT	$I_S = I_1 + I_2$ Kirchhoffs current law
$V_S = V_1 + V_2$ Kirchhoffs voltage law	VOLTAGE CONSTANT
$R_T = R_1 + R_2$	$R_T^{-1} = R_1^{-1} + R_2^{-1}$


Ohms Law. **Work Sheet 1A Basic calculations.**

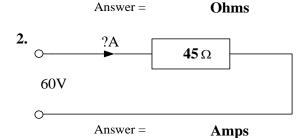

Fill out this triangle now

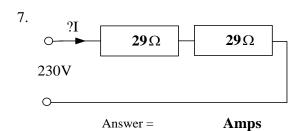

Determine the unknown value(s). Layout your workings on another page.

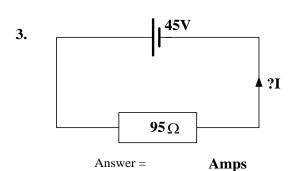

Answer =

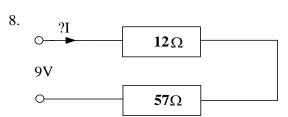
6. Fill in the gaps - use the triangle above to help.

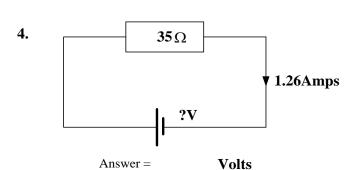
Volts	Ohms Ar	nps
25	10	
45	5	
1.5	1	
	6	12
	100	10
	7	8
160		2
60		30
27		9
	50	4
18		10
19	37	

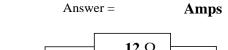

- 7. A. If the Resistance in a circuit is increased and the Voltage remains constant, Does the Current increase or decrease?
 - B. If the Voltage to a circuit increases and the Resistance remains constant, does the Current increase or decrease?
 - C. If the Resistance to a circuit is doubled, then what has happened to the Voltage?

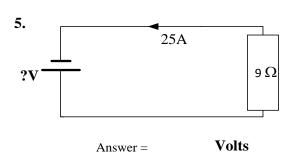

Ohms Law. Work Sheet 1B Basic calculations.

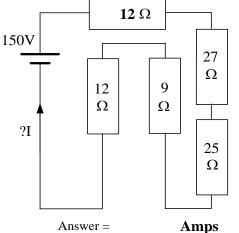

Fill out this triangle now


Determine the unknown value(s). Layout your workings on another page.

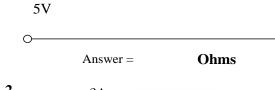

- 1. 20A ?Ω
 200V
- 6. Now go and read your notes on series circuits characteristics. Write one of them below:

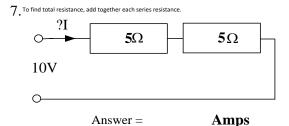


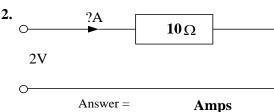




10. State Ohms Law in words:

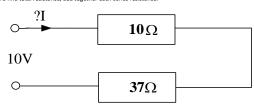

9.

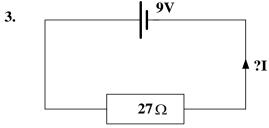

Ohms Law. **Work Sheet 1C Basic calculations.**

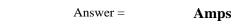

Fill out this triangle now

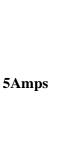
Determine the unknown value(s). Do all workings on another page

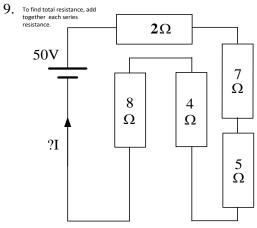
- 1. Ω ? 5V
- 6. Now go and read your notes on series circuits characteristics.












Answer =

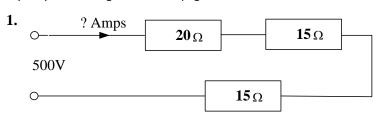
4.

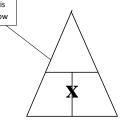
 12Ω

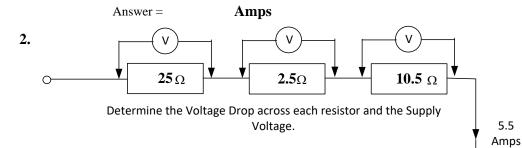
Amps

10. Draw the symbol for a Battery Cell, show polarity. Is the current shown on these drawings Conventional current flow or electron flow?.

Amps

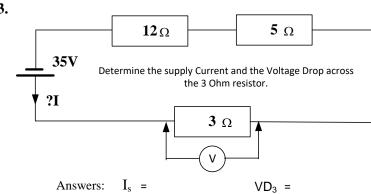

Answer =



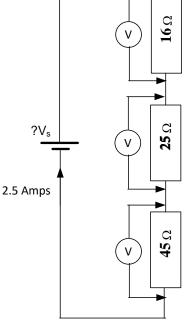

Ohms Law. **Work Sheet 2A** Series calculations.

Fill out this triangle now

Determine the unknown value(s). Layout your workings on another page.



Answers:
$$V_{25} = V_s =$$


$$V_{2.5} =$$

$$V_{10.5} =$$

3.

V_S =

 VD_{16} =

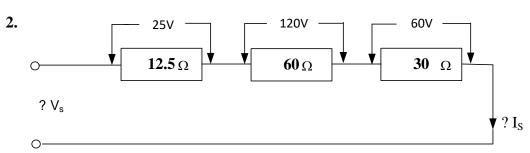
4. 37Ω 25Ω 200VDetermine the supply Current and the Voltage Drop across the 37 & 25 Ohm resistors. **?I** 10.73 Ω

Answers:

 $I_s =$ $VD_{37} =$ $VD_{25} =$

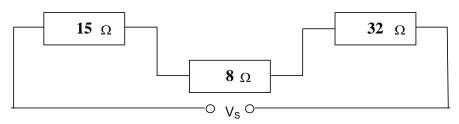

 $VD_{25} =$

VD₄₅ =

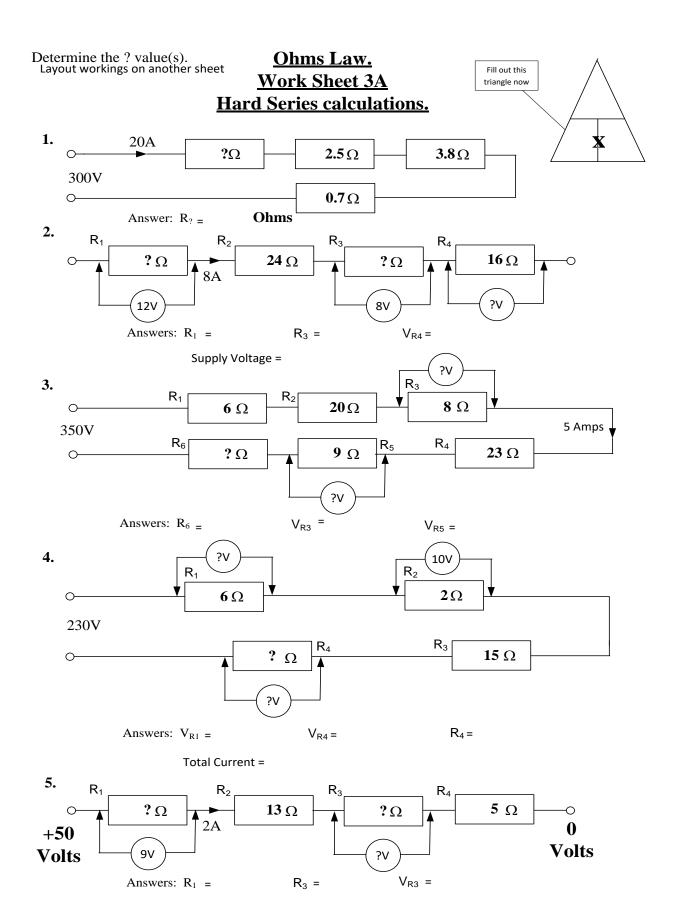

Ohms Law. Work Sheet 2B Series calculations.

Fill out this triangle now

Determine the unknown value(s). Layout your workings on another page.

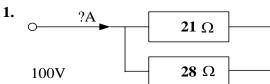


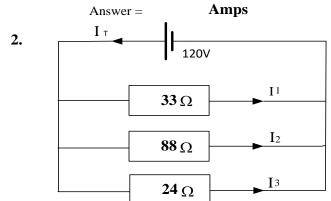
Answer = **Volts**


Answers: $V_S = Volts$ $I_S = Amps$

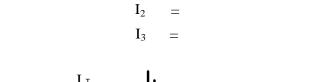
3.

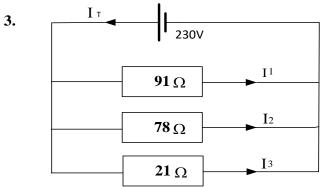
Determine the total current flow if the Supply Voltage (V_S) is:

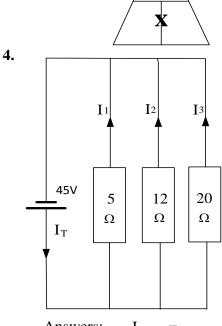

 $\begin{array}{l} \textbf{4.} \ \ \, \text{Four resistors are connected in series. Each resistor has a resistance of 15 Ohms. If the supply Voltage is 100} \\ \text{Volts, what is the current drawn from the supply and what Voltage Drop would be measured across each} \\ \text{resistor. Draw the circuit below (neatly) and show on it your calculated answers.} \end{array}$



Ohms Law. **Work Sheet 5A**


Basic Parallel calculations.


Determine the unknown value(s). Layout your workings on another page.



Answers: Ιτ I_1 I_2 =

Answers: Ιτ = I_1 = I_2 I_3 =

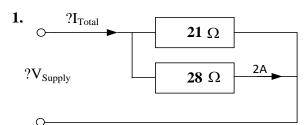


Fill out this

triangle now

Answers: I_T = \mathbf{I}_1 = I_2 = I_3 =

5.



 I_1 = I_2 =

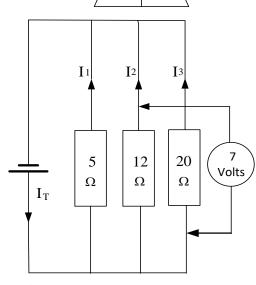
Ohms Law. **Work Sheet 6A**

Harder Parallel calculations.

Determine the unknown value(s). Layout your workings on another page.

 $Amps. \quad V_{Supply} =$ $Answers:\,I_{Total}\!=\!$ Volts

2. 24 Amps ?V_{Supply} **I** 1 22Ω I_2 22Ω **I**3 22Ω


> Answers: I_1 =

> > I_2

 I_3

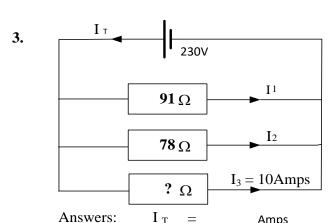
 V_{Supply}

4.

X

Answers: \mathbf{I}_1

Fill out this triangle now

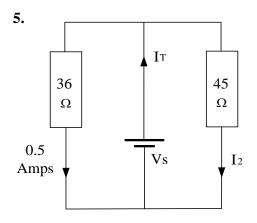

> I_2 =

=

 I_3

 $I_{T} \\$

 $R_{T} \\$

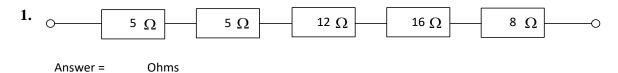


 I_T Amps

 \mathbf{I}_1 = Amps

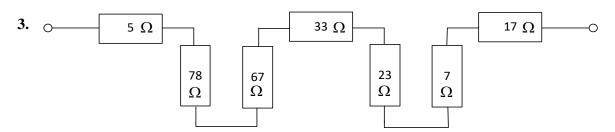
 I_2 = Amps

 R_3 = Ohms

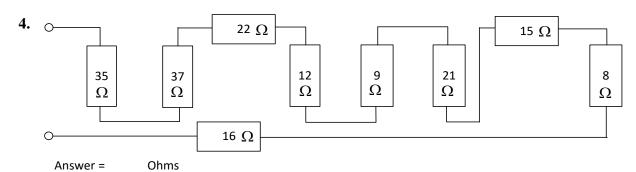


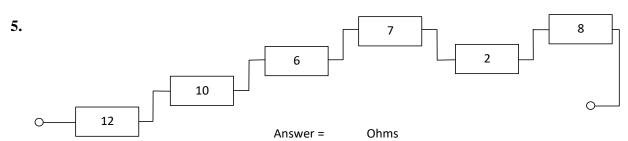
Answers: I_2

> I_T =


Vs

Work Sheet 10A Total Resistance Network



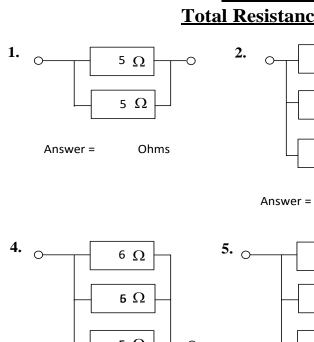


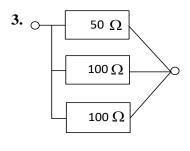
Answer = Ohms

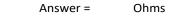
Answer = Ohms

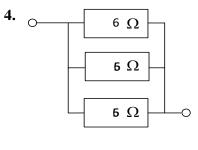
6. Six 15 Ohm, three 10 Ohm and two 8 Ohm resistors are connected in series in a random order. Draw the circuit and calculate the total resistance.

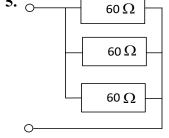
Answer = Ohms

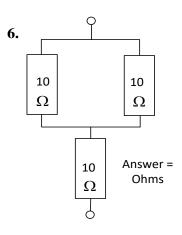

Work Sheet 10B Total Resistance Network

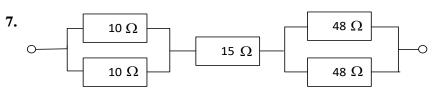

15 Ω

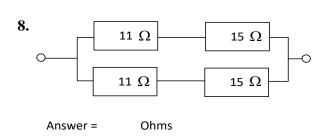

15 Ω

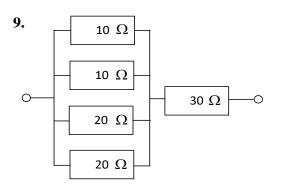

15 Ω


Ohms

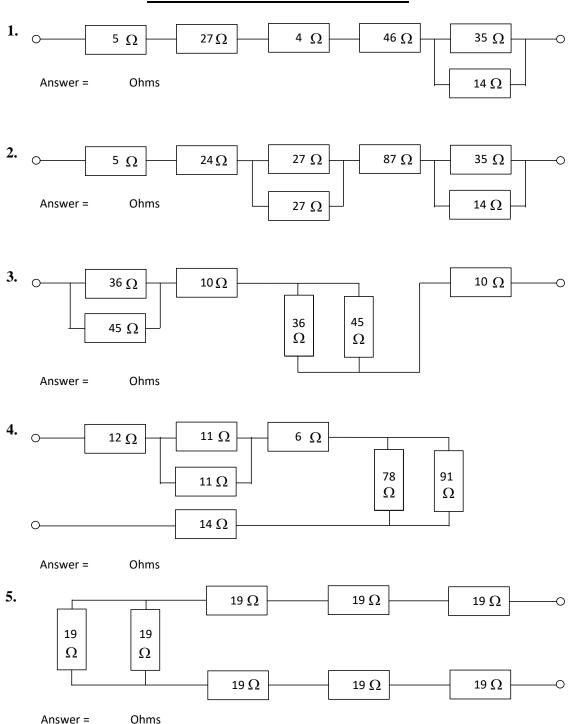




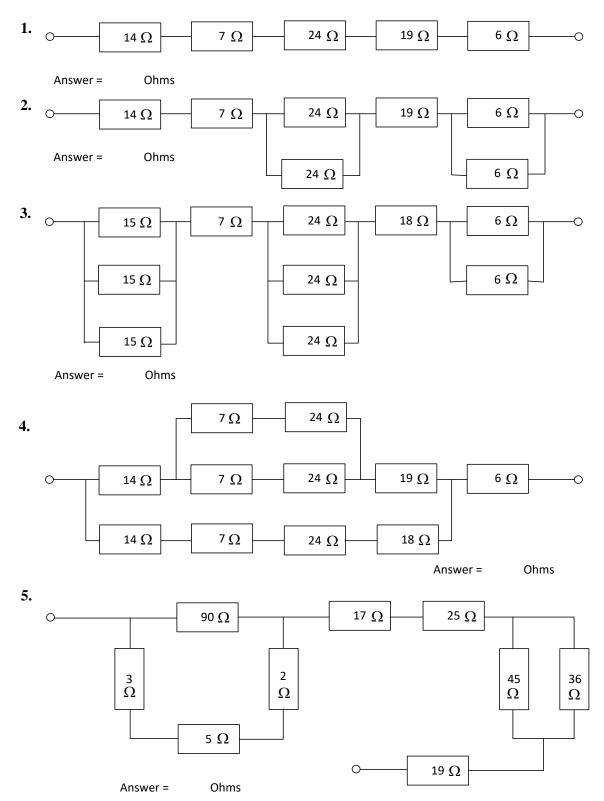



Ohms Answer =

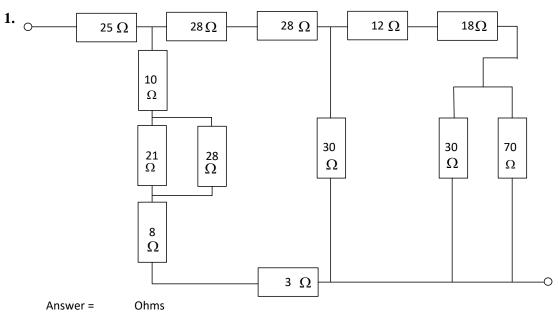
Answer = Ohms

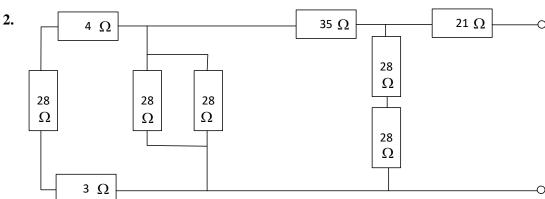

Answer = Ohms

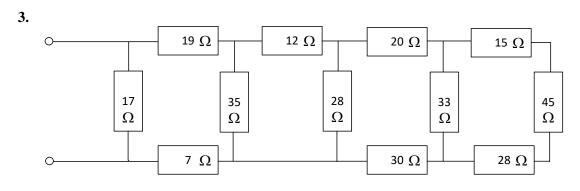
Answer = Ohms


Work Sheet 10C Total Resistance Network Calcs

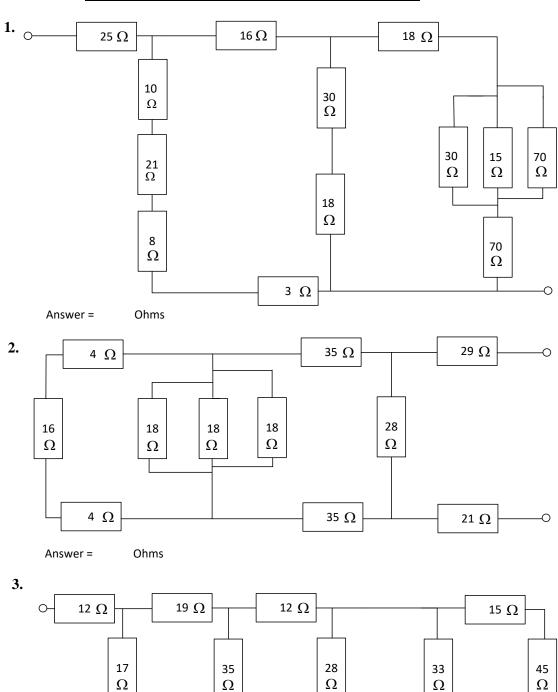
6. Three 27 Ohm resistors are connected in series and then two 5 Ohm resistors in parallel are also connected in series. Draw the circuit and find the total resistance in ohms.


Answer = Ohms


Work Sheet 10D Total Resistance Network Calcs


Work Sheet 11A

Total Resistance Network Calcs - Harder



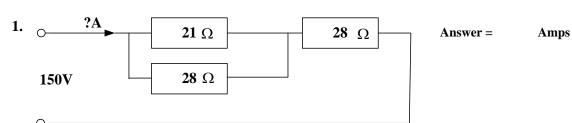
Answer = Ohms

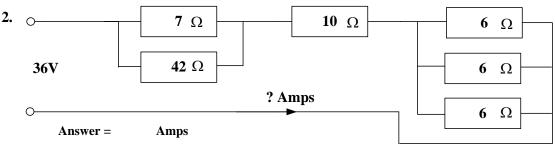
Work Sheet 11B

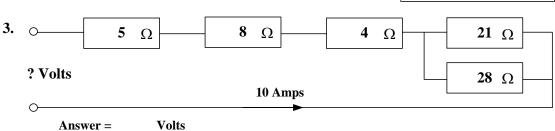
Total Resistance Network Calcs - Harder

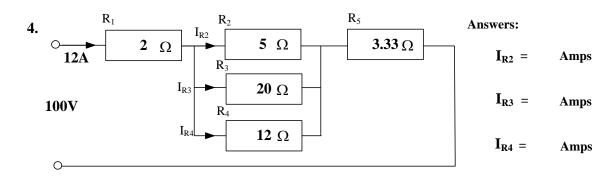
12 Ω

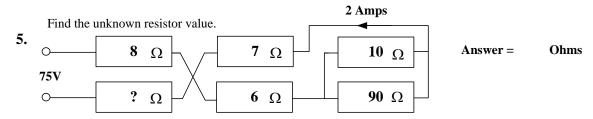
30 Ω

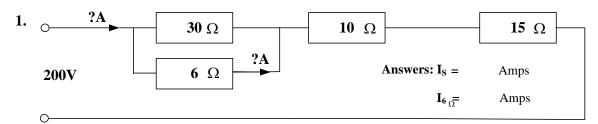

28 Ω

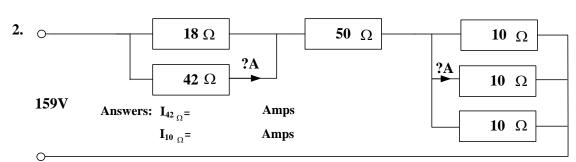

Answer = Ohms

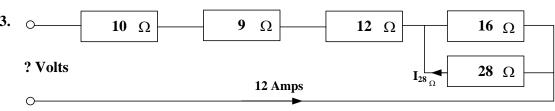

Ohms Law. Work Sheet 15A Basic Series-Parallel calculations.


Fill out this triangle now

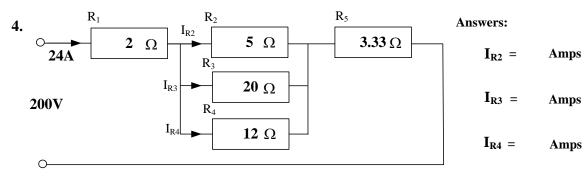

Determine the unknown value(s). Layout your workings on another page.

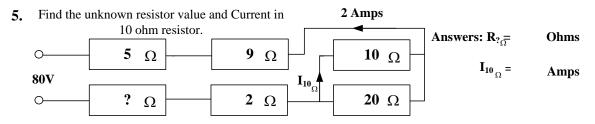



Ohms Law. Work Sheet 15B Basic Series-Parallel calculations.


ulations.
Fill out this triangle now

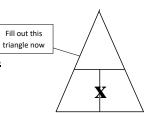
Determine the unknown value(s).


Layout your workings on another page.



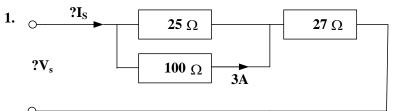
Answers: Supply Voltage = Volts, $I_{28_{\Omega}}$ = Amps

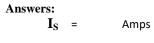
Work Sheet 8 A. Series and Parallel problems - Words.


For each problem DRAW the circuit, put the information from the question onto the drawing and then solve using - guess who's law.

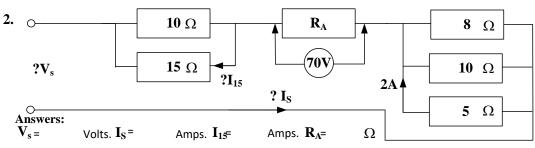
- 1. Three resistors are connected in parallel and then this combination is connected in series with a 10 Ohm resistor. When 500 Volts is applied to the circuit, 25 Amps flows in the 10 Ohm series resistor. If 2 of the parallel resistors are 28 Ohms each then what is the value of the unknown resistor, and what is the current through it and the voltage drop across it?
- 2. A heating element is in two sections, each of 45 Ohms. Find the current drawn from the supply (230V) when the sections are connected in a) series and b) parallel?
- 3. Two cables having resistances of 0.5 Ohms and 0.8 Ohms carry between them a current of 30 Amps. What is the current in each cable and the Voltage Drop that occurs when the current is flowing?
- 4. A cable carries a current of 45 Amps and when that happens a voltage drop of 21 Volts occurs. What would be the resistance value of a cable connected in parallel with the first to reduce the voltage drop to 5% of 230 Volts.
- 5. The specification for a wire to be used in a wire wound resistor says that its resistance is 0.6 Ohms per meter. How many meters would be required to give:
 - a) A resistance of 3.7 Ohms, and
 - b) 0.2 Ohms, given that the wire must be at least a meter long to reach from one end of the resistor to the other?
- 6.

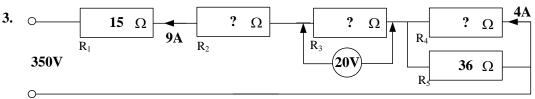
A circuit consists of three resistors initially connected in series and then in parallel. What in general terms occurs to the following, given the changes listed.		
	<u>Series</u>	<u>Parallel</u>
Supply current: if Voltage is doubled ?		
Total resistance: if one resistor is removed?		
Supply voltage : if the current has halved ?		
Total current: if an extra resistor is added?		
Voltage drop across each resistor: if an extra resistor is added?		

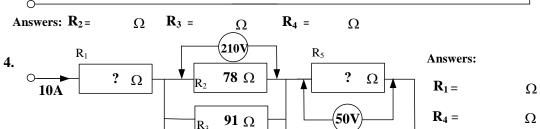

Ohms Law. **Work Sheet 16A**


Harder Series-Parallel calculations.

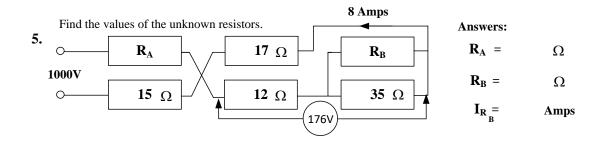
Volts

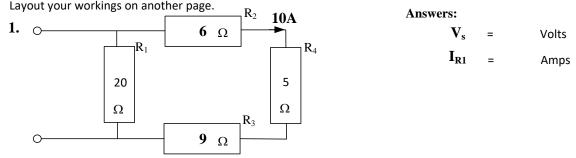

Determine the unknown value(s). Layout your workings on another page.

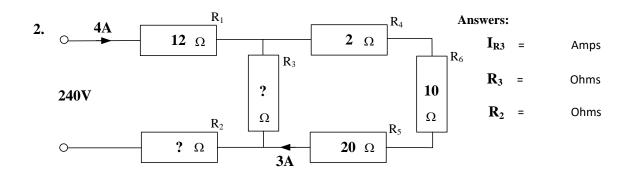


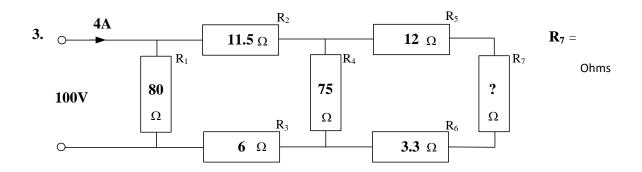


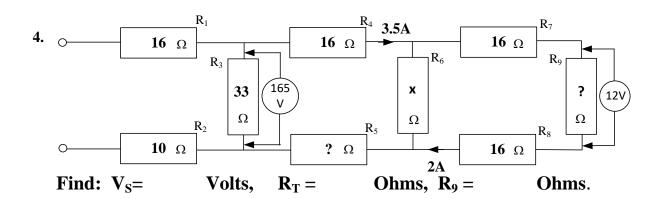
 V_s =



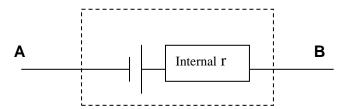




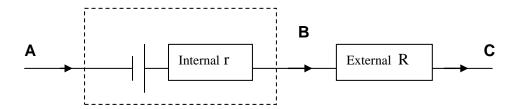



Ohms Law. Work Sheet 16C Harder Series-Parallel calculations.

Determine the unknown value(s). Layout your workings on another page.



Internal resistance 25070E6


Every source of EMF, whether a cell/battery, power supply, generator or transformer has an internal resistance.

This internal resistance has an effect on the final voltage available to do any work. As current is drawn, by ohms law, the voltage is reduced at the supply terminals. This can be illustrated by diagram below.

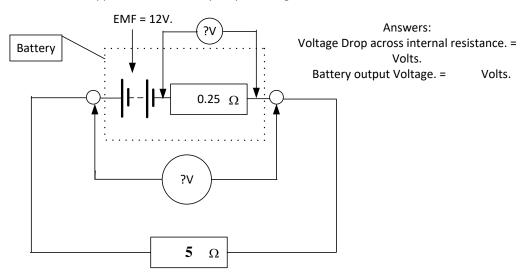
When the power supply is measured with no load attached we see an EMF available. This is measured across AB. No current is flowing and there is no volt drop across the internal resistance.

When we connect a load, as shown below, a current is drawn. By ohms law a voltage will drop across the internal resistance and across the external load resistance. Some of the original EMF is "used up" inside the supply leaving less available for the external circuit.

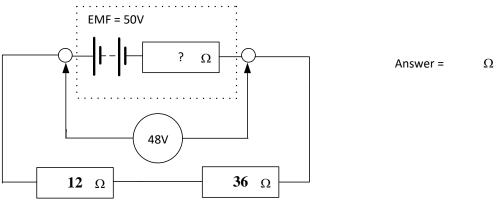
By Kirchhoffs voltage law we see that; $V_{EMF} = V_{internal r} + V_{external load}$

For example:

2.3v is measured across the terminals of a lead acid cell with no load connected. The internal r is 0.1Ω . When 3A flows what is the voltage available at the cells terminals

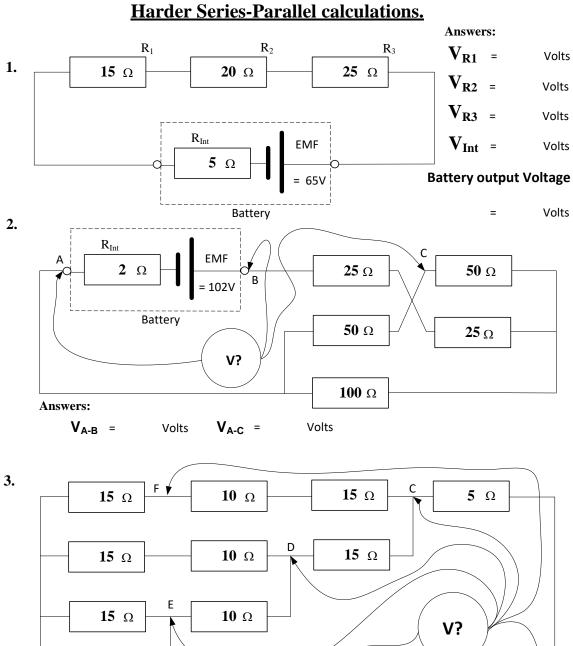

```
Voltage at the terminal = EMF — Voltage internal Voltage internal = Supply current X internal resistance (V = I x R) Therefore terminal voltage = 2.3v — (3A x 0.1\Omega) = 2.0v
```

This shows that 0.3v is dropped or lost inside the cell under this load.

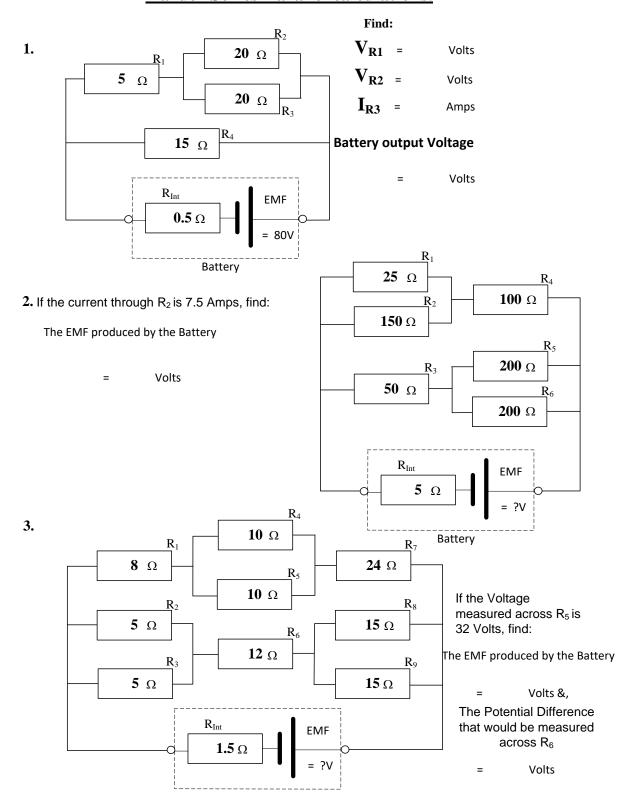

Work Sheet 9A Internal Resistance of a power supply e.g. Battery.

The internal resistance is represented by a series resistor within the source.

1. A battery has an EMF of 12 V and an internal resistance of 0.25 Ohms. Find the drop in voltage across the battery output terminals when a load of 5 Ohms is applied and the battery output Voltage?.


2. Determine the value of the internal resistance?.

3.Ten 1.5V cells are connected in series. Each cell has an internal resistance of 0.15 Ohms. What would be the Voltage across a 6 Ohm load resistor placed across the complete battery?. (Hint - Draw the circuit here)


Answer = Volts.

Ohms Law. Work Sheet 16D Jandar Saries Parallal calcula

15 Ω

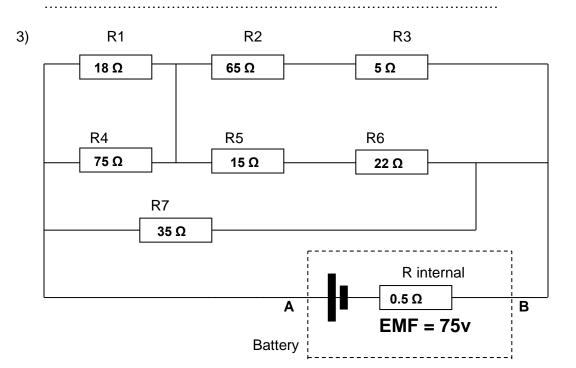
Ohms Law. Work Sheet 16E Harder Series-Parallel calculations.

Kirchhoff answers

These answers are listed to enable you to check if you have correctly solved the questions asked. If you cannot solve a particular problem ask your tutor for assistance. All answers must show line by line working before they will be signed off as completed.

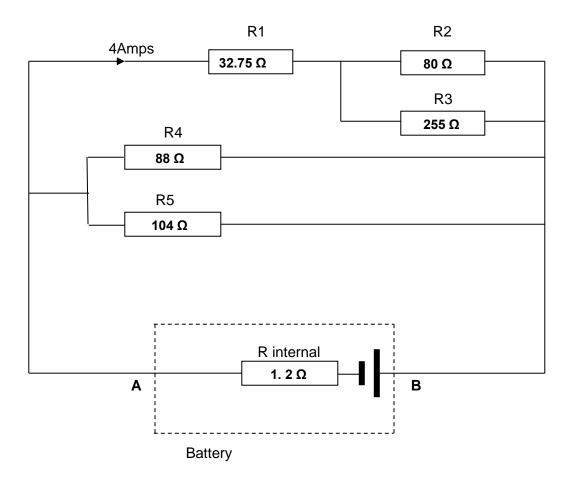
- 1A) 1/ 200v 2/ 5.26Ω 3/ 0.33A 4/ 1A 5/ 7.5v 6/ 2.5, 9, 1.5, 72, 1000, 56, 80, 2, 3, 200, 1.8, 0.514 7a/ decrease 7b/ increase 7c/ doubled if current kept the same
- 1B) **1/** 10Ω **2/** 1.33A **3/** 0.47A **4/** 44.1v **5/** 225v **6/** see tutor **7/** 3.97A **8/** 0.13A **9/** 1.76A **10/** see tutor
- 1C) **1/** 5Ω **2/** 0.2A **3/** 0.33A **4/** 60v **5/** 10v **7/** 1A **8/** 0.213A **9/** 1.92A **10/** see tutor
- 2A) **1/** 10A **2/** 137.5v, 13.75v, 57.75v, 209v **3/** 1.75A, 5.25v **4/** 2.75A, 101.75v, 68.75v **5/** 215v, 62.5v, 40v, 112.5v
- 2AX) **1/** 10A **2/** 36v, 30v, 24v, 90v **3/** 0.33A, 8.25v **4/** 1.25A, 46.25v, 31.25 **5/** 860v, 250v, 160v, 450v
- 2B) 1/300v 2/205v, 2A 3/0.18A, 0.91A 4/1.67A, 25v each R
- 3A) **1/** 8Ω **2/** 1.5Ω , 1Ω , 128v **3/** 4Ω , 40v, 45v **4/** 30v, 115v, 23Ω **5/** 4.5Ω , 2.5Ω , 5v
- 5A) **1/** 8.33A **2/** 10A, 3.64A, 1.36A, 5A **3/** 16.43A, 2.53A, 2.95A, 10.95A **4/** 15A, 9A, 3.75A, 2.25A **5/** 2.5A, 0.71A, 1.79A
- 6A) **1/** 467A, 56v **2/** 8A, 8A, 8A, 176v **3/** 15.5A, 2.53A, 2.95A, 23Ω **4/** 1.4A, 0.58A, 0.35A, 2.33A, 3Ω **5/** 0.4A, 0.9A, 18v
- 7A) **1/** 1.48Ω , 24Ω , 12Ω , 8Ω , 1.48Ω , 4.8A, 2.4A, 3A, 16.2A
- 7B) **1/** 3v, 3 Ω , 0.5A, 1.5A
- 8A) 1/35Ω, 250v, 7.143A 2/2.56A, 10.22A 3/18.46A, 11.54A, 9.23v
 4/0.56Ω 5/6.17m, 3 parallel 1m lengths
 6/ series doubles, reduces, halves, reduces, reduces
 Parallel doubles, increases, halves, increases, remains the same
- 9A) **1/** 0.57v, 11.43v **2/** 2Ω **3/** 12v

- 10A) $1/46\Omega$ $2/279\Omega$ $3/230\Omega$ $4/175\Omega$ $5/45\Omega$ $6/136\Omega$
- 10B) $1/2.5\Omega$ $2/5\Omega$ $3/2.5\Omega$ $4/2\Omega$ $5/20\Omega$ $6/15\Omega$ $7/44\Omega$ $8/13\Omega$ 9/33.33 Ω
- 10C) $1/92\Omega$ $2/139.5\Omega$ $3/60\Omega$ $4/79.5\Omega$ $5/123.5\Omega$ $6/83.5\Omega$
- 10D) $1/70\Omega$ $2/55\Omega$ $3/41\Omega$ $4/33.4\Omega$ $5/90\Omega$
- 11A) $1/47.9\Omega$ $2/45.95\Omega$ $3/12.17\Omega$
- 11B) $1/47.42\Omega$ $2/70.37\Omega$ $3/23.76\Omega$
- 12A) $1/25\Omega$ $2/24\Omega$ $3/64.6\Omega$ $4/8.64\Omega$
- 12B) $1/31.5\Omega$ $2/48.8\Omega$ $3/5.3\Omega$
- 15A) 1/3.75A 2/2A 3/290v 4/7.28A, 1.82A, 3.033A 5/7.5Ω
- 15B) 1/6.67A, 5.55A 2/0.723A, 0.8A 3/494.18v, 4.36A 4/14.4A, 3.6A, 6A 5/17.33Ω, 1.33A
- 16A) 1/15A, 705v 2/105v, 4.2A, 1.67A, 16.66 Ω 3/1.67 Ω , 2.22 Ω , 45 Ω 4/0.5 Ω , 42 Ω , 5 Ω , 5A 5/71 Ω , 14 Ω , 5.71 Ω
- 16B) 1/64v, 2A, 32V 2/102v, 0.9A, 90V 3/75.88v, 1.8A, 5.5Ω 4/127V, 3.5A, 27v, 37.5Ω, 7.71Ω
- 16C) 1/200v, 10A 2/1A, 96 Ω , 24 Ω 3/9.9 Ω 4/386v, 45.41 Ω , 6 Ω
- 16D) **1**/15v, 20v, 25v, 5v, 60v **2**/100v, 25v **3**/118.2v, 89.4v, 36.53v, 15.89v, 33.53v
- 16E) 1/25v, 50v, 2.5A, 75v 2/6850v 3/262.54v, 129.16v

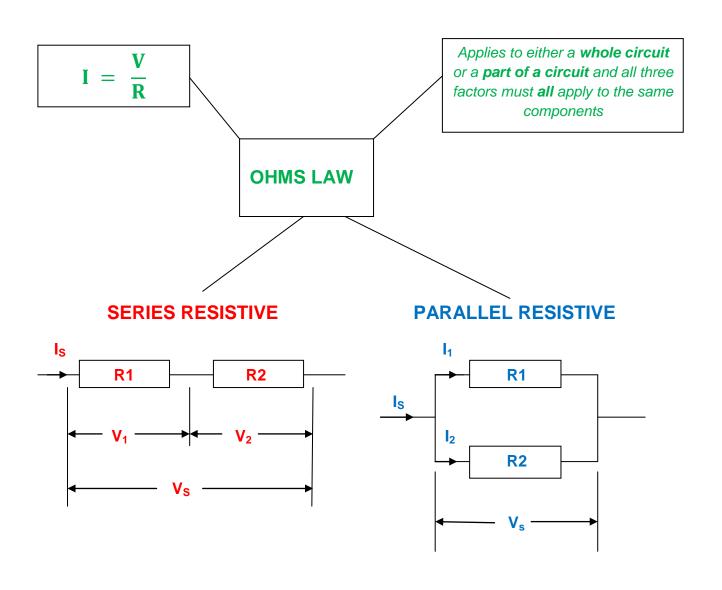

Congratulations, you should now be able to complete the assessment overleaf after showing this to your tutor

assignment name.....

1) Write the 4 equations you would generally employ when solving calculations with **series resistors only** in the circuit.



2) Write the 4 equations you would generally employ when solving calculations with **parallel resistors only** in the circuit.


- a) Calculate total resistance of the external load.
- b) Calculate the total current.
- c) Calculate the voltage at the battery terminals d) Calculate the current through R1, R3, R4, R5, and R7.
- e) Calculate the voltage across R4, R6

4)

From the circuit above.

- A) Calculate the total current.
- B) What is the voltage drop across R3.C) What is the value of the battery EMF

CURRENT CONSTANT	$\mathbf{I}_{S} = \mathbf{I}_{1} + \mathbf{I}_{2}$ Kirchhoffs current law
V _S = V ₁ + V ₂ Kirchhoffs voltage law	VOLTAGE CONSTANT
$R_T = R_1 + R_2$	$R_{T}^{-1} = R_{1}^{-1} + R_{2}^{-1}$